PROGRAMMABLE DPM

1 PHASE PROGRAMMABLE DPM
AC Volt Meter (1Ф) : PGDV
AC Ammeter (1Ф) : PGDA

Installation \& Operating Instructions

2. Measurement Reading Screens

Measurement Re
Programming
Si
3.1 Password Protece
32
3.2 Set Up Screen
3.2.1 Potentia Transformer Primary value
3.22
3.2.2 Potential Transformer Secondary value
3.2.3 Current Transformer Primary value
3.2.4 Current Transformer Secondary value
3.2.5 Reset of min/max values
3.2.6 Auto Scrolling
4. Installation
4.1
4.2
EMC
Case
Intalalation Requirements
Dims
4.3 Wiring
4.4
Auxiliary
4.4 Auxiliary Supply
4.5 Fusing
${ }_{4.6}^{4.6}$ Fuasing $/$ Ground C
Connection Diagrams
5.1 Connection Diagrams for PGDV 96×96 models
5.2 Connection Diagrams for PGDA 96×96 models

5.4 Connection Diagrams for PGDA 48×96 models

Speefifications
15000670_Rev.F 0212013
Available Models
 $0 \quad 0$

1. Introduction

The PGDVVA Series is a a anel mounted 96 $\times 96 \mathrm{~mm}$ and $48 \times 96 \mathrm{~mm}$ Digital Panel Meters
. The instrument integrates accurate measurement technology. The measurements are True RMS upto 1 Its Harmonic. The parameteres are displayed
righthess LED display with 20 mm and 14 mm Digit height oppions.

TABLE 2: Parameters Displayed with PGDA models

Measured Parameters	Unit of measurement
System Current	App
Syster Current max Value (Hi)	Amp
System Current min. Value (Lo)	Amp

2. Measurement Reading Screens

In normal operation the user is presented with the measurement reading screens.
These screens
 A. Display Screens of PGDV Models

perature Coefficient	
Voltage (PGDV)	$0.025 \% /{ }^{\circ} \mathrm{C}$ ($10 . .120 \%$ of Rated Value)
Current (PGDA)	0.05\% / ${ }^{\circ} \mathrm{C}$ ($5 . .120 \%$ of Rated Value)
Optional:	
Current (PGDA Max 200\% input)	$0.05 \% /{ }^{\circ} \mathrm{C}$ ($5 . .200 \%$ of Rated Value)
(For Rated value range of use $0 . .50^{\circ} \mathrm{C}$)	
Error change due to variation of an influence quantity	2 * Error allowed for the reference condition applied in the test.
Display	
Led	1 line 4 digits
Digit height	$20 \mathrm{~mm} / 14 \mathrm{~mm}$ optional
Annunciator LEDs	For Displaying Units and Parameter
Update rate	Approx. 1 seconds
Controls	
User interface	2 Keys
Isolation	
Dielectric voltage withstand test between circuits and accessible surfaces	3.3 kV RMS 50 Hz for 1 minute between all electrical circuits.
Standards	
EMC Compatibility	IEC 61326-1:2005
	$10 \mathrm{~V} / \mathrm{m}$ min-Level 3 industrial low level
	Electromagnetic radiation environment
Safety	IEC 61010-1, Year 2001
IP for water \& dust	IEC 60529
Environmental conditions	
Operating temperature	0 to $50^{\circ} \mathrm{C}$
Storage temperature	-25 to $70^{\circ} \mathrm{C}$
Relative humidity	$0 . .90 \%$ RH (Non condensing)
Warm up time	3 minute (minimum)
Shock	15 g in 3 planes
Vibration	$10 . .55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude
Enclosure front	IP 50
Enclosure back	\|P 20
Enclosure	
Material	Polycarbonate Housing,
Terminals	Screw-type terminals
	96×96 models 48×96 Models
Bezel Size (DiN 43718)	$48 \mathrm{~mm} \times 96 \mathrm{~mm}$
Depth	
Weight	300 g Approx. 250 g Approx.

5．2 Connections For PGDA 96X96 models

5．3 Connections For PGDV 48X96 model

5．4 Connections For PGDA 48X96 model

6．Specifications ：
Inputs（PGDV）

Nominal Input Voltage System Primary Values System Secondary Values Max continuous input
voltage
Overload Indication
$\underset{\substack{\text { Max short duration input } \\ \text { voltage }}}{ }$
Nominal input voltage burden
$290 V_{\text {vew }}$
60 V to 9
CoV to 999 kV ，programmable at site
COV to 290 V ，programmable a t site
20% of Rated Value
（If input is
If input is greater than 125% of secondary value．） $\underset{\substack{2 \times \text { Rated Value } \\ \text { 1s application } \\ \text { ref }}}{ }$ （1s application repeated 10 times
at 10s intervals）
0.3 VA approx．perphase

Inputs（PGDA）：
Nominal Input Current System CT primary values System Secondary Values
Max continuous input curr Overload Indication
Nominal input Burden Max short duration current input

Standard Values 1 to 0999 kA A／ 5 A ，programmable
120% of Rated Value
＂－oL＂ If in int is
If input is greater than 125% of secondary value， 0.2 VVA approx．per phase
ptional：Inputs（PGDA Max 200\％Inpuu）
Nominal Input Current
System CT primary values
System Secondary Values Max continuous input current Overload Indication

Nominal input Burden Max short duration current input

Auxiliary Supply ： External Auxiliary Supply Frequency Range
va Burden

Operating Measuring Ranges

PGDV ：Voltage	$10 . . .120 \%$ of Rated Value
PGDA：Current	$5 \ldots 120 \%$ of Rated Value
Oppional	

Frequency
Accuracy
PGOV ：Voltage $\quad 0.5 \%$ of range +1 Digit（ $10 . . .100 \%$ of Nominal Value）
PGDA：Current 0.5% of range +1 Digit（ $10 . .100 \%$ of Nominal Value）
Optional： ．$\%$ olrange +1 Digit（10．．．100\％of Nomina Value）

Reference conditions for Accuracy ：

Input frequency
Input waveform
Auxiliary supply voltage
Auxiliary supply frequency 230 or $60 \mathrm{~Hz}+2 \%$
Sinusoidal（distortion factor 0.005 ）
Rated Value $\pm 1 \%$
Rated Value $\pm 1 \%$
Nominal range of use of influence quantities for measurands
PGDA：Curre 5．． 120% of Rated Value
Pptional：（Max 200\％（1）
PGDV ：Voltage Temperature Temperature
Auxiary supply voltage
Auxiliary supply frequency

5．． 200% of Rated Value
10.120% of Rated Vual
$10 . .120 \%$ of Rated Value
Rated Value $\pm 10 \%$
Rate $50^{\circ} \mathrm{C}$
0
Rated Value $+5 \%$

Password Incorrect．
This screen indicates th
the Password entered．
Pressing the＂仓＂＂key will return to the Enter
Password stage．
Pressing the＂ת＂key exits the Password menu
and return to the Measurement mode．

5678 Awaiting for confirmation
Pressing the＂Д＂key to advance the operation to
the＂New Password Confirmation＂screen and sets the＂New Passw
he fouth digit，

advances to the＂key actential Transtormest secondary adavancesto the＂Potential Iransfor
value Editi menu．（see Section 3.2 ．2） Pressing the＂仓＂key will enter the＂Potential
transormer Primary value Multipier Selection． Initialy the＂multipier must be selected．Pressing the
＂仓े＂Key will move the decimal point postion to the
． ＂$\stackrel{\text {＂l＂}}{ }$ Key will move the decimal point position to the
right Side and show \＃\＃\＃，after which it will agai

．essing the＂凡＂＂key accepts the present multiplier（Decimal Point position）and advances

Potential Transtormer value Edit prompting for third digit．＂dececimal point indicates prompting for thircd igit．（
that this will be flashing）．
Pressing the＂＂＂key will scroll the value of the
third digitit from 0 through to third digit from 0 thr
from 9 round to 0 ．
Pressing the＂ת＂key to advance the operation to ressing the＂J＂key to avvance
he next digit and sets the third digit，
$0 \quad 0$
exex digit and sets the third digit，

New $/$ Change Password，third digit entered，
prompting for fourth digit．$($ denotes that decim prompting for fourth digit．（＊denotes that decimal
point will be flashing）． Pressing the＂\uparrow＂key will scroll the value of the Pressing ine
fourt digit from 0 through to 9 ，the value will wrap
from 9 round to 0 Surth digit from
Pressing the＂Ω＂key to advance the operation to
the＂New Password Confirmation＂screen and sets He＂New Passw
the fourth digit，

Potential Transformer Primary Value Confirmatio This screen will only appear following an edit of the Polential raia
on Display．
If the set value is to be corrected，pressing the＂仓＂ key will return to the
Value Edit＇stage．
Pressing the＂ת＂key sets the value and then
advance to the Po advance to the Potential Transtormer
Value edit screen（See section 3.2 .2 ）

3．2．2 Potential Transformer Secondary Value（for PGDV models）

	979
（1）	0

This screen is displayed after PT primary value set
followed by＂Pt－S＂i tautomatically goes to value edit． Pressing＂＂I＂key accepts the present value and then Pressing the＂仓＂＂ey will enter the PT secondary
value edit mode ．denotes that the decimal point will be flashing．
Pressing＂＂$\widehat{\text {＂}}$＂will scroll the digit value 0 through 9 and
back to 0 ，except Most Significant igitit，in which the back to 0, except Most Significant Digitit in which the
Valae will es scoled drom tritugn a and baca to o．
Secondary value can be set from 60 to to 290VL－N．
ressing the＂＂\uparrow＂key will move curser to next Digit．When Value of Least significant digiti is set pressing＂ת＂Wiil enter Secondary value confirmation screen．

T secondary value Confirmation
This screen will appear following the edit of This screen will appear following
PT secondary in above screen． Pressing the＂Ω＂key set the value and advance to Reset of min $/$ max values selection
menu．（See section 3.2 .5$)$ nenu．（See section 3．2．5） Pessing the＂＂\uparrow＂key re－enter Potential Transforme Value edit menu

3．2．3 Current Transformer Primary Value（for PGDA models） The nominal full scale Current which will be displayed Phase current for both system types．

577	
1	0

 the position to 100 digit w.
indicates the value in $k A$

Pressing the＂ひ＂key accepts the decimal point position
and enters into Curent

Current Transformer value Edit

Pressing the＂仓＂＂key will scroll the value of the mos
significant digit（100s）form ressing the＂Ω＂key accepits the present value he cursor position and advances the cursor to the ext Least significant digit．

When the least significant igitit has been set，pressing the＂תु＂key will advance to the
＂Current transformer Primary Value Confirmation＂screen．

3．2．4 Current Transformer Secondary Value（for PGDA models）

Inlowesen is isplayed after CT primary value set followed by＂Ct－S＂on display screen Pressing＂＂key §feepts the present value and
then advances to reset menu（section 3.25 ）． Pressing the＂仓＂key will scroll between 1 and 5
 selected on isplay，pressing＂ת工＂will
secondary value confirmation screen．

$5 E E$	
1	0

CT secondary value Confirmation This screen will appear following the edit of
PT secondany in Pressing the＂ת＂，key set the value and
will advance to Reset menu（See section 3.2 .5 ） Pressing the＂仓＂key re－enter Current Transformer Value edit menu．

3．2．5 RESET of min／max Values
This screen is displayed after CT／PT secondary set followed by＂RESET＂on Display

$\begin{aligned} & \text { Pressing "仓" " key enters into Reset menu and } \\ & \text { scroll between the parameters as shown in the } \\ & \text { screens with }\end{aligned}$
$\begin{aligned} & \text { scrolls between the parameters as st. } \\ & \text { screens with pressing the key again. }\end{aligned}$
$\begin{aligned} & \text { Pressing "ת" Key enters Screen Auto or fixed } \\ & \text { selection menu (section 3.2.6) }\end{aligned}$ By selecting the parame
parameters as follow：
P None：No parameter resel ALL：：Both mananeere reses
Hi：max value enset values rese
Lo：min value reset

	H	

Pressing＂仓＂key scrolls between the screens． Pressing＂Ω＂selects the displayed parameter
and enters to Reset parameter confirmation and enters
Screen．
er Primary Value Confirmatio
This screen will only appear following an edit of the Current Transformer Primary Value．
If the set value is to be corrected，pressing the＂仓＂
key will return to the＂Current Transformer Primay key will return to the
Value Edit＇ 5 stage．
Pressing the＂ת＂key sets the value and then
advance to the Current Transformer Secondary advance to the Current Transformer
Value edit screen（Seee section 3．2．4）

3．2．6 Selection of Auto Scrolling or fixed Screen

This Screen will display ater PT／CT secondary value
Confirmation followed by AUUIO＂Display． Pressing the＂仓＂key will scroll between＂Yes＂and ＂No＂． Select＂Yes＂for Auto scrolling of parameter display and
Select＂No＂for fixed display screen Pressing the＂ζ＂key will enter into Screen selection
Confirmation Pressing the＂，ken
Conimation screen．

Auto／Fixed Screen Confirmatio

Pressing the＂Ω＂key set the selected option and Exit set up with entering into measurement mode． Pressing the＂$仑$＂key re－enter Screen selection menu．

Caution

In the interest of safety and functionality this product
a qualified engineer，abiding by any local regulations．
Voltages dangerous to human life are present at some of the terminal
connections of this unit．Ensure that all supplies are de－energised before Connections of this unit．Ensure that all supplie
These products do not have internal fuses therefore external fuses must
be used to ensure safety under faut conditions．

4．1 EMC Installation Requirements
This product has been designed to meet the erertificaion of the EU directives
when installed to a good code of practice for EMC in industrial environments， $\underset{\text { e．g．}}{\substack{\text { when in }}}$

interference which could cause a disturbance in function．
2．Avioi routing leads alongside cables and products that are，or could be，a
3．To protect the product against permanent damage，surge transients must

 circumstancesit may be necessary to temporarily disconnect the
axiliry
aperation．
opply for a period of greater than
5 seconds
ESD precautions must be taken at all times when handling this product． 4．2 Case Dimensions and Panel Cut Out 4．2．1 for 96×96 models

Mounting of PGDVAA is featured with easy＂Clip－in＂mounting．Push the meter in panel
slot（size $92 \times 22 \mathrm{~mm}$ ，it will lick fict into panel with the four integrara retention clips on two
sidids of meter
If required Aditional suport is provided with swivel screws（optional）as shown in figure．

As the front of the enclosure conforms to 1 P50 it is protected from water spray
from all directions，additional protection to the panel may be obtained by the
 be protected from liquid．
The PGDVIA should be mounted in a reasonably stable ambient

